COBOL — An Introduction

identification division.
program-id. COBOL-Workshop.
author. Mike Harris.
procedure division.
display "Hello OxDUG!".

My Programming Background

Started with ZX BASIC on ZX81 and ZX Spectrum

Moved on to Mallard BASIC (Amstrad PCW) and then to (the
excellent and still my favourite) GFA BASIC (Atari ST)

Learnt Pascal, C, Ada, C++, and OCCAM at University
Learnt Java professionally, then never used it much
For my sins, programmed in Perl and PHP for (far too many) years.

Also wrote bad JavaScript, tried to learn good JavaScript, and
toyed with stuff like AngularJS, Node.|s and React.|s

Done some Python (nice) and Ruby (hmm)
Basically messed about with lots of languages over the years

COBOL - History

e COmmon Business Orientated
Language

(Completely Obsolete Business
Orientated Language?)

e “Invented” by Grace Hopper, who
was the inventor of FLOW-MATIC.

e Standardised between 1959 and
1960 by our friends at the
Pentagon by the group
CODASYL.

 Design goal was to be platform L
and proprietor independent.

COBOL - History

Appeared in 1959. Ml

CODASYL COBOL-60 X _ Report to
ANS| COBOL-68 CONFERENCE on DATA

_ _ l H SYSTEMS LANGUAGES
ANSI COBOL-74 (at this point
the most used language in world) ncluding
ANSI COBOL-85 (structured
programming addltlons) ¢ ORIENTED LANGUAGE (COBOL)
ISO COBOL-2002 (object for Programming
orientated additi ons) Electronic Digital Computers
ISO COBOL-2014 (dynamic
tables and modular features)

DEPARTMENT OF DEFENSE APRIL 1960
L]

1357
1956
1953
1591
1565
1556
170
1572
1873
1575
1976
1877
19713
1920
1881
1582
1803
1504
1885
1507
1980
1383
1330
1592
1524
1895
1596
1397
1590

188

Flon-matic
aPL COBOL
cooLée
Prolog
sh
comoL 4
Scheme
e o - Scheme MIT
tesh
ksh
ARz Scheme 84
FL | cosoLss Common Lisp
Scheme RaRs
kshae We | Ae Scheme RaRs Erlang
bash
*ash
|
bahs3 3
Comman Lisp (3HSi)
021 Prolog 150
bash 2.0 ALss
i shao
Ishss F-Script Scheme RSRS
03
shao
ool 2002
bash 3.0

Scheme RERS

Lambda frolog

Newtonseript

Genealogy

Lisp

Logo

smalltalk

Smalalk 72

Smalkealk 74

Smaltalk 76

Smalkalk 78

smalltalk 80

clirs

sef

“aos

“eupsso

Ceal

AppleSeript

Squeak

REBOL

Fortran |
Agols§ Fanrantl
Algol 60
e
> Fortran v
Simula 1+ Snabol
el
iswin - Algolw
P Snbolt
Ayl &8
acrL
8
Pascal ° &
o
> Mad’u\a
oete sa
L Fortran77 Media2
T " ese el ¢ (ksR)
hde sed e
= . aec
| "o 30
BT Adaga” aceam Paseal AFNOR
Ly L SML
Wiranda Lean Objective Pascal nak crr
Effel) Objecive-c
Clean caml pert -
Oberan T obewrenc
eftel2 Concument Clean 3 Moda:3 clansn *
“ haskal suLsn Bas Costami) Fortran 90
i R o | ey GRS
oyin - ' ‘
e
soher 1.0 wa / pers
Ruby * adass Java e Dashi | <S5 Javaseript
ez ocam” | mi m e -
st e NecRERx EcHAsarnt
Haskell 08 Jva 2wi2) [SED) Pad 5.005
ja'60 N } Bhon 152 €39 oMisptnl TR1
ocami 30 Hendrian ~ c# | lewr pSeo s ython2.0 JovaSerpr 15
GHC5.00 - WBNET -
Fae s % P50 Pyban22 Cyelane
Ry 18 e aHEGD Nemete 8o Fortrn 2003 Lua 5.0
* Groovy T Sk pirs e
c# 20 “Zannan cvcone 10
CAL (0 pan Quar) Python 2.5 Javasariot 17
G 1 forress Lobeta” €220 ———— 010 —

“ansic

“Joss

" Basic”

Humps

Standard Mumps

Mumps 1984

Quick Basic

Visual Basic

Unican

SEQUEL

EoueLz

sa

ANSISQL

10 soL

oLz

soL1999
auik

Xquery

soL2003

Farth

Postscript

PostSeript level 2

COBOL: pros & cons

It's arguably very well adapted to its domain
of finance and mass data processing.

It's verbose and this helps readability of code
and thus is said to be self-documenting.

It's very stable. With the exception of OO
additions, the last major change was in 1985.
This makes it also very maintainable.

It runs across many, many platforms and
OSes.

It's relative simple as a language.
It's nonproprietary.

It has powerful file, string and numerical
handling functions built in.

Legacy code base is very stable with almost
no new bugs being introduced.

There's a LOT of legacy code, which is
spaghetti-like (but then there's a lot of
JavaScript like that!)

OO is still not fully supported in all versions.

It's not suitable for a lot of applications,
such as embedded programming.

It has a lot of reserved words, which could
be a good thing depending on your
viewpoint.

Structured programming is possible, but it
may feel ‘clunky' compared to other
languages.

Best IDE is MicroFocus, but this is
commercial software — then again the best
IDEs normally are (excepting vi & emacs).

Reserved words

ABS, ACOS, ANNUITY, ASIN, ATAN, BYTE-LENGTH, CHAR, COMBINED-DATETIME,

CONCATENATE, COS, CURRENCY-SYMBOL, CURRENT-DATE, DATE-OF-INTEGER,

DATE-TO-YYYYMMDD, DAY-OF-INTEGER, DAY-TO-YYYYDDD, E, EXCEPTION-FILE,

EXCEPTION-LOCATION, EXCEPTION-STATEMENT, EXCEPTION-STATUS, EXP, EXP10,

FACTORIAL, FORMATTED-CURRENT-DATE, FORMATTED-DATE, FORMATTED-DATETIME,

FORMATTED-TIME, FRACTION-PART, HIGHEST-ALGEBRAIC, INTEGER,

INTEGER-OF-DATE, INTEGER-OF-DAY, INTEGER-OF-FORMATTED-DATE,

INTEGER-PART, LENGTH, LENGTH-AN, LOCALE-COMPARE, LOCALE-DATE,

LOCALE-TIME, LOCALE-TIME-FROM-SECONDS, LOG, LOG10, LOWER-CASE,

LOWEST-ALGEBRAIC, MAX, MEAN, MEDIAN, MIDRANGE, MIN, MOD,

MODULE-CALLER-ID, MODULE-DATE, MODULE-FORMATTED-DATE, MODULE-ID,

MODULE-PATH, MODULE-SOURCE, MODULE-TIME, MONETARY-DECIMAL-POINT,
MONETARY-THOUSANDS-SEPARATOR, NUMERIC-DECIMAL-POINT,

NUMERIC-THOUSANDS—-SEPARATOR, NUMVAL, NUMVAL-C, NUMVAL-F, ORD, ORD-MAX,

ORD-MIN, PI, PRESENT-VALUE, RANDOM, RANGE, REM, REVERSE,

SECONDS-FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SIGN, SIN, SORT,

STANDARD-DEVIATION, STORED-CHAR-LENGTH, SUBSTITUTE, SUBSTITUTE-CASE,

SUM, TAN, TEST-DATE-YYYYMMDD, TEST-DAY-YYYYDDD, TEST-FORMATTED-

DATETIME,

TEST-NUMVAL, TEST-NUMVAL-C, TEST-NUMVAL-F, TRIM, UPPER-CASE, VARIANCE,

WHEN-COMPILED, YEAR-TO-YYYY IDENTIFICATION DATA DIVISION SECTION

GREATER LESS SET STRING UNSTRING VAT i i §
WHEN IS THEN IF END ProGcrRaM ruNcTIoNn COBOL has some 500+ reserved words. |
PICTURE

C in contrast has just 50.

Prolog has none!

Verbosity

// Calculation in C:

if (hours worked <

else

standard hours)
amount = 40 * payrate;

amount = hours * payrate;

*> Calculation in COBOL:

IF NumberOfHoursWorked IS LESS THAN OR EQUAL TO StandardHours THEN
MULTIPLY Payrate BY 40 GIVING Amount

ELSE
MULTIPLY Payrate BY Hours GIVING Amount

END-TIF.

*> Shorter-form calculation in COBOL:

IF NumberOfHoursWorked <= StandardHours
COMPUTE Amount = Payrate * 40
ELSE
COMPUTE Amount = hours * payrate
END-IF.

identification division. . | import java.math.BigDecimal;
| program-id. SalesTax. i | public class SalesTaxWithBigDecimal
| working-storage section. it . . . L .
' 01 beforeTax picture 999v999 value 123.45. P ?ubllc static void main(java.lang.String[] args)
81 z?i2i$Z§Rate gigtzig gggggg value .065. § § BigDecimal beforeTax BigDecimal.valueOf (12345, 2);

BigDecimal salesTaxRate
BigDecimal ratePlusOne

BigDecimal.valueOf (65, 3);

procedure division.

§ Main. ! § salesTaxRate.add(BigDecimal.valueOf(1l));
| compute afterTax rounded = beforeTax + (beforeTax b BigDecimal afterTax = beforeTax.multiply(ratePlusOne);
* salesTaxRate) § 3 afterTax = afterTax.setScale(2, BigDecimal.ROUND_HALF_UP);
display “After tax amount is “ afterTax. b System.out.println("After tax amount is " + afterTax);

i identification division.

| program-id. sumofintegers.
. data division.

| working-storage section.

import java.util.Scanner;
public class sumofintegers {

public static void main(String[] arg) {
System.out.println(“Enter a positive integer:”);
Scanner scan=new Scanner (System.in);
int n=scan.nextInt();
int sum=0;
for (int i=1l;i<=n;i++) {
sum=sum+i;
}

01 n binary-int.
01 i binary-int.
01 sum binary-int.

procedure division.

display “Enter a positive integer:”
. accept n
. perform varying i from 1 by 1 until i is greater than n
add i to sum
end-perform
display “The sum is:” sum.

System.out.println(“The sum is “+sum);

COBOL

2012 Computer World survey found that over
60% of organisations used COBOL with 54%
saying that more than half of their internal
business code was written in it (compared to
39% for Java).

Over 27% said that COBOL was used for
more than half of new development.

In May 2013 IBM noted that 15% of all new
enterprise functionality is written in COBOL
and that there are 200,000,000,000 lines of
code in use, growing between 3% and 5%
per year.

2005 report cited that COBOL handles 75%
of all computer transactions and 90% of all
financial transactions.

But | work in the world of the web and
nobody is talking about it there.

Usage

e 2.6 million lines of code (LOC) in 100
programs.

e« Estimates are that some 4 million new
lines of code written every year.

e It's currently at position 20 TIOBE's
index of top programming languages
(up from 28t ast year)

e It's been 8t and 47t in the last 14
years.

TIOBE Index for COBOL

urce: www.tiobe.com

b @ -~ -F-W-A-T- HF-F- = %z 5

Let's look at some COBOL

Hello World

e Classic COBOL

Modern COBOL

Program: P ROG 0 1 Requestedby. Q UAS AR CHUNAWALA |Page 010001 .
P QUASAR CHUNAWALA Date: 27-02-2011 Identfica
2 et LT program-1i1d. HelloWorld.
Foge) |iserin '::!A B COBOL Statement
T Jla__E[Il% 353 3 Fi] L) E: F3 (1] (0 (1]] £33 2] [} 1] i
0|1 IDENTIFIICAT I ON DI VIISION. [] [] []
02 | |PlRlo/eiRAM-ID. PRlojsO[1]. | d d
ERiNANR AR AR AR RNARRARN procedure division.
D‘. ENVIHON“ENT DIVISION‘ | IS S S A NN N S N S A T S A N N S S S S S S A A A
05
o6 | [olAlTIA DiTvIsTON. | d] l " H l l W ld ! "
EEiNANNAIRN RN 1splay e @) or < e
08 PRIO|CZEDURE DI VISION.
iyl e A NN R AN S AEAR SR EA RS AR ARERE
1 u | N - S.TOP R UN B [L e e e e
:j i //600011 PERFORM DISPLAY-GREETING ITER-NUM TIMES. GREETING
114 L I | L 1] B REREREERD LI I R ER RN
sl TR | L] (|] L1] | n |
wep \ L il BERRccosvovvccoscovoolocolecooslecccoBeccoBoolocoBovoecnneoovooncnosoonsncoloon
1; 1131 Bl 1100 snaaasaaaaa00 8000008888282 23222029321218383391218 8281212282024
19 2222222222222222222220222222222222222222222222222022- - oo oo TmTE e
21| asssaaasaa::l:s:saosasaaaalaaaaeaalsasoolaasaaaalasa:rls//COBUCLG JOB (001), 'COBOL BASE TEST', 00010000
22 CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1) 00020000
B T R TR R [(R R RS EE SRR RS R | XY CREER
23 R R T o o T B o T e //BASETEST EXEC COBUCLG 00030000
29 THLT T T [1] AL Gl L gk S b/ /COB .SYSTN DD * 00040000
25 | il | e [e Y Y Yy 00000* VALIDATION OF BASE COBOL INSTALL 00050000
:: 77777777777077772777777077770777777 077777777777 777777 (1000 IDENTIFICATION DIVISION. 00060000
1 sssssscs8858sssssssssssssPessssssssssssssssssssssslls 01100 PROGRAM-ID. 'HELLO'. 00070000
2923999999333 ssle22l9s2992slsssl229l32M292333029323 02000 ENVIRONMENT DIVISION. 00080000
02100 CONFIGURATION SECTION. 00090000
02110 SOURCE-COMPUTER. GNULINUX. 00100000
02120 OBJECT-COMPUTER. HERCULES. 00110000
02200 SPECIAL-NAMES. 00120000
02210 CONSOLE IS CONSL. 00130000
03000 DATA DIVISION. 00140000
04000 PROCEDURE DIVISION. 00150000
04100 00-MAIN. 00160000
04110 DISPLAY 'HELLO, WORLD' UPON CONSL. 00170000
04900 STOP RUN. 00180000

Baslic Structure

Programs are organised into - -
Programs’ Divisions, Sections, identification division.

Paragraphs, Sections, program-id. HelloWorld.
Sentences and Statements. data division.

Not case sensitive, but working-storage section.
traditional way Is to use 01 Friend pic x(5) value “Bob”.
UPPER CASE; | prefer procedure division.

lower case. display "Hello " Friend
Program must have a program-move “Alice” to Friend

id display “Hello “ Friend.

It's very verbose and has a lot procram
of noise words. DIVISION (s)

SECTION (s)
Paragraph (s)
Sentence(s)

Developing in COBOL

Linux (Debian) GnucoBoL 1.1 is 1
“sudo apt-get install open-cobol python3-pip python- otable and 2.0 is
qts5 ‘ i

| . 'in development.
- sudo pip3 install OpenCobolIDE --upgrade |

Linux (CentOS/RedHat) osx

sudoyuminstall Install home brew (from http://brew.sh/)

brew install gnu-cobol
Windows " Goetthe IDE from htpiftia neticobolide
- Binary build from Run the IDE
. http://ttfa.net/gnucoboll |

Get the IDE from
http://ttfa.net/cobolide

HackEdit is a cool project — an editor
that supports Python & COBOL

IR E Find it on GitHub

Or try http://www.tutorialspoint.com/compile_cobol_online.php
(doesn't work in Chrome for me; but does in Firefox)

http://brew.sh/
http://www.tutorialspoint.com/compile_cobol_online.php

Hello World example

program-id. HelloWorld.
procedure division.
display "Hello World!".

Personanlised Hello World

identification division.

program-id. Helloworld. '$ cobc -x -free myprogram.cbl

' $./myprogram
data division. ettt

working-storage section.

01 MyName pic x(20).
88 UserIsMike value “Mike” spaces.

procedure division.

display "Enter your name: with no advancing

accept MyName

display "Hello MyName
if UserIsMike then
display “You're so great at COBOL!”

end-if.

Command Line Hello World

identification division.

program-id. Helloworld. '$ cobc -x -free myprogram.cbl

. $./myprogram “Mike Harris”

data division. S —
working-storage section.

01 MyName pic x(20).

procedure division.

display "Enter your name: with no advancing

accept MyName from argument-value

display "Hello " MyName "!"

Saying hello to lots of

program-id. HelloWorld. §$ cobc -x -free myprogram.cbl

environment division. o - /myprogram Mike Bob Alice

data division. S
working-storage section.

01 MyName pic x(255).

01 NumberOfArguments pic 9.

01 CurrentArgumentIndex pic 9.

procedure division.

accept NumberOfArguments from argument-number

perform varying CurrentArgumentIndex from 1 by 1
until CurrentArgumentIndex > NumberOfArguments

accept MyName from argument-value

display "Hello "

function trim(MyName trailing)
welcome to HacktionLab"

end-perform

Calculator (Evaluate)

PERFORM WITH TEST BEFORE UNTIL OperatorIsStopRun

PERFORM EnterNumbers

EVALUATE TRUE
WHEN OperatorIsAdd COMPUTE Result = Numl + Num2
WHEN OperatorIsSubtract COMPUTE Result = Numl - Num2
WHEN OperatorIsMultiply COMPUTE Result = Numl * Num2
WHEN OperatorIsDivide DIVIDE Numl BY Num2 GIVING Result
WHEN OTHER SET Result TO 0

END-EVALUATE

DISPLAY "Result is ", Result
PERFORM ValidateOperator WITH TEST AFTER UNTIL ValidOperator
END-PERFORM

Monty Hall

Suppose you're on a game show and you're given the
choice of three doors. Behind one door is a car; behind
the others, goats. The car and the goats were
placed randomly behind the doors before the show.

The rules of the game show are as follows:

After you have chosen a door, the door remains closed
for the time being. The game show host, Monty Hall, who
knows what is behind the doors, now has to open one of

the two remaining doors, and the door he opens must have
a goat behind it. If both remaining doors have goats
behind them, he chooses one randomly. After Monty Hall
opens a door with a goat, he will ask you to decide
whether you want to stay with your first choice or to
switch to the last remaining door.

For example:
Imagine that you chose Door 1 and the host opens Door 3,
which has a goat. He then asks you "Do you want to switch
to Door Number 2?" Is it to your advantage to change your
choice?

Note that the player may initially choose any of the
three doors (not just Door 1), that the host opens a
different door revealing a goat (not necessarily Door 3),
and that he gives the player a second choice between the
two remaining unopened doors.

Simulate at least a thousand games using three doors for
each strategy and show the results in such a way as to make
it easy to compare the effects of each strategy.

What else

File handling — sequential and direct
acess.

External sub-programs (libraries)
Copybooks (include files)

Powerful string handling and other
intrinsic functions.

GnuCOBOL Hooks into databases, but
not MySQL at the moment.

Powerful report writing.
User defined functions.

Object-orientated COBOL with classes,
objects, factories, inheritance,
interfaces, etc.

can 1t do?

| CLASS-ID. Tester-cls AS "tester"
‘ INHERITS FROM Base.

| REPOSITORY.
| CLASS BASE AS "base"
CLASS Tester-cls AS "tester".

. FACTORY.

| WORKING-STORAGE SECTION.

1 01 InstCounter-fws PIC 9 VALUE ZEROS.
! 01 FactoryData-fws PIC 9 VALUE ZEROS.

 METHOD-ID. New.
~ LOCAL-STORAGE SECTION.

! 01 LocalData-mls PIC 9 VALUE ZEROS.

. LINKAGE SECTION.

' 01 TestObject-1lnk OBJECT REFERENCE.

' PROCEDURE DIVISION RETURNING TestObject-lnk.

 END METHOD New.
' END FACTORY.
| END CLASS TesterCls.

Conclusions

COBOL is not dead

COBOL is not really all that bad either

Good, clean COBOL code can be written

Old, nasty COBOL code can and should be refactored

we can learn some lessons from this....

Good, clean code can be written in any programming language
Old, nasty code in any language can and should be refactored

Refactor your code early and often to avoid technical debt (even if it is written in the latest,
shazziest thing using the trendiest programming paradigm).

Re-writing a project in a new code base is often the highest risk approach to take; the result is likely
not to be an improvement

Any code you write in whatever programming language could end up being around for a very, very
long time; as can the language (to wit ALGOL, FORTRAN, BASIC, COBOL, PL/1 and even Perl are
all still out there!)

display “Thank You”
stop run.
end program COBOL-Workshop.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

