

COBOL – An Introduction

identification division.

program-id. COBOL-Workshop.

author. Mike Harris.

procedure division.

display "Hello OxDUG!".

44

My Programming Background

● Started with ZX BASIC on ZX81 and ZX Spectrum

● Moved on to Mallard BASIC (Amstrad PCW) and then to (the
excellent and still my favourite) GFA BASIC (Atari ST)

● Learnt Pascal, C, Ada, C++, and OCCAM at University

● Learnt Java professionally, then never used it much

● For my sins, programmed in Perl and PHP for (far too many) years.

● Also wrote bad JavaScript, tried to learn good JavaScript, and
toyed with stuff like AngularJS, Node.js and React.js

● Done some Python (nice) and Ruby (hmm)

● Basically messed about with lots of languages over the years

COBOL - History

● COmmon Business Orientated
Language

(Completely Obsolete Business
Orientated Language?)

● “Invented” by Grace Hopper, who
was the inventor of FLOW-MATIC.

● Standardised between 1959 and
1960 by our friends at the
Pentagon by the group
CODASYL.

● Design goal was to be platform
and proprietor independent.

COBOL - History

● Appeared in 1959.

● CODASYL COBOL-60

● ANSI COBOL-68

● ANSI COBOL-74 (at this point
the most used language in world)

● ANSI COBOL-85 (structured
programming additions)

● ISO COBOL-2002 (object
orientated additions)

● ISO COBOL-2014 (dynamic
tables and modular features)

Genealogy

COBOL: pros & cons

● It's arguably very well adapted to its domain
of finance and mass data processing.

● It's verbose and this helps readability of code
and thus is said to be self-documenting.

● It's very stable. With the exception of OO
additions, the last major change was in 1985.
 This makes it also very maintainable.

● It runs across many, many platforms and
OSes.

● It's relative simple as a language.

● It's nonproprietary.

● It has powerful file, string and numerical
handling functions built in.

● Legacy code base is very stable with almost
no new bugs being introduced.

● There's a LOT of legacy code, which is
spaghetti-like (but then there's a lot of
JavaScript like that!)

● OO is still not fully supported in all versions.

● It's not suitable for a lot of applications,
such as embedded programming.

● It has a lot of reserved words, which could
be a good thing depending on your
viewpoint.

● Structured programming is possible, but it
may feel 'clunky' compared to other
languages.

● Best IDE is MicroFocus, but this is
commercial software – then again the best
IDEs normally are (excepting vi & emacs).

Reserved words
ABS, ACOS, ANNUITY, ASIN, ATAN, BYTE-LENGTH, CHAR, COMBINED-DATETIME,
CONCATENATE, COS, CURRENCY-SYMBOL, CURRENT-DATE, DATE-OF-INTEGER,
DATE-TO-YYYYMMDD, DAY-OF-INTEGER, DAY-TO-YYYYDDD, E, EXCEPTION-FILE,
EXCEPTION-LOCATION, EXCEPTION-STATEMENT, EXCEPTION-STATUS, EXP, EXP10,
FACTORIAL, FORMATTED-CURRENT-DATE, FORMATTED-DATE, FORMATTED-DATETIME,
FORMATTED-TIME, FRACTION-PART, HIGHEST-ALGEBRAIC, INTEGER,
INTEGER-OF-DATE, INTEGER-OF-DAY, INTEGER-OF-FORMATTED-DATE,
INTEGER-PART, LENGTH, LENGTH-AN, LOCALE-COMPARE, LOCALE-DATE,
LOCALE-TIME, LOCALE-TIME-FROM-SECONDS, LOG, LOG10, LOWER-CASE,
LOWEST-ALGEBRAIC, MAX, MEAN, MEDIAN, MIDRANGE, MIN, MOD,
MODULE-CALLER-ID, MODULE-DATE, MODULE-FORMATTED-DATE, MODULE-ID,
MODULE-PATH, MODULE-SOURCE, MODULE-TIME, MONETARY-DECIMAL-POINT,
MONETARY-THOUSANDS-SEPARATOR, NUMERIC-DECIMAL-POINT,
NUMERIC-THOUSANDS-SEPARATOR, NUMVAL, NUMVAL-C, NUMVAL-F, ORD, ORD-MAX,
ORD-MIN, PI, PRESENT-VALUE, RANDOM, RANGE, REM, REVERSE,
SECONDS-FROM-FORMATTED-TIME, SECONDS-PAST-MIDNIGHT, SIGN, SIN, SQRT,
STANDARD-DEVIATION, STORED-CHAR-LENGTH, SUBSTITUTE, SUBSTITUTE-CASE,
SUM, TAN, TEST-DATE-YYYYMMDD, TEST-DAY-YYYYDDD, TEST-FORMATTED-
DATETIME,
TEST-NUMVAL, TEST-NUMVAL-C, TEST-NUMVAL-F, TRIM, UPPER-CASE, VARIANCE,
WHEN-COMPILED, YEAR-TO-YYYY IDENTIFICATION DATA DIVISION SECTION
GREATER LESS SET STRING UNSTRING EVALUATE
WHEN IS THEN IF END PROGRAM FUNCTION
PICTURE

COBOL has some 500+ reserved words.

C in contrast has just 50.

Prolog has none!

Verbosity
// Calculation in C:

 if (hours_worked <= standard_hours)
 amount = 40 * payrate;
 else
 amount = hours * payrate;

 *> Calculation in COBOL:

 IF NumberOfHoursWorked IS LESS THAN OR EQUAL TO StandardHours THEN
 MULTIPLY Payrate BY 40 GIVING Amount
 ELSE
 MULTIPLY Payrate BY Hours GIVING Amount
 END-IF.

 *> Shorter-form calculation in COBOL:

 IF NumberOfHoursWorked <= StandardHours
 COMPUTE Amount = Payrate * 40
 ELSE
 COMPUTE Amount = hours * payrate
 END-IF.

Legibility

identification division.
program-id. SalesTax.
working-storage section.
01 beforeTax picture 999V999 value 123.45.
01 salesTaxRate picture V9999 value .065.
01 afterTax picture 999.99.
procedure division.
Main.

compute afterTax rounded = beforeTax + (beforeTax
* salesTaxRate)

display “After tax amount is “ afterTax.

import java.math.BigDecimal;
public class SalesTaxWithBigDecimal
{
 public static void main(java.lang.String[] args)
 {
 BigDecimal beforeTax = BigDecimal.valueOf(12345, 2);
 BigDecimal salesTaxRate = BigDecimal.valueOf(65, 3);
 BigDecimal ratePlusOne =
salesTaxRate.add(BigDecimal.valueOf(1));
 BigDecimal afterTax = beforeTax.multiply(ratePlusOne);
 afterTax = afterTax.setScale(2, BigDecimal.ROUND_HALF_UP);
 System.out.println("After tax amount is " + afterTax);
} }

identification division.
program-id. sumofintegers.
data division.
working-storage section.

01 n binary-int.
01 i binary-int.
01 sum binary-int.

procedure division.

display “Enter a positive integer:”
accept n
perform varying i from 1 by 1 until i is greater than n

add i to sum
end-perform
display “The sum is:” sum.

import java.util.Scanner;

public class sumofintegers {

public static void main(String[] arg) {
System.out.println(“Enter a positive integer:”);
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
int sum=0;
for (int i=1;i<=n;i++) {

sum=sum+i;
}

System.out.println(“The sum is “+sum);
}

}

COBOL Usage

● 2012 Computer World survey found that over
60% of organisations used COBOL with 54%
saying that more than half of their internal
business code was written in it (compared to
39% for Java).

● Over 27% said that COBOL was used for
more than half of new development.

● In May 2013 IBM noted that 15% of all new
enterprise functionality is written in COBOL
and that there are 200,000,000,000 lines of
code in use, growing between 3% and 5%
per year.

● 2005 report cited that COBOL handles 75%
of all computer transactions and 90% of all
financial transactions.

● But I work in the world of the web and
nobody is talking about it there.

● 2.6 million lines of code (LOC) in 100
programs.

● Estimates are that some 4 million new
lines of code written every year.

● It's currently at position 20 TIOBE's
index of top programming languages
(up from 28th last year)

● It's been 8th and 47th in the last 14
years.

Let's look at some COBOL

Hello World

● Classic COBOL ● Modern COBOL

program-id. HelloWorld.

procedure division.

display "Hello World!".

Basic Structure

● Programs are organised into
Programs, Divisions, Sections,
Paragraphs, Sections,
Sentences and Statements.

● Not case sensitive, but
traditional way is to use
UPPER CASE; I prefer
lower case.

● Program must have a program-
id

● It's very verbose and has a lot
of noise words.

identification division.

program-id. HelloWorld.

data division.

working-storage section.

01 Friend pic x(5) value “Bob”.

procedure division.

display "Hello " Friend

move “Alice” to Friend

display “Hello “ Friend.

Developing in COBOL

OS X
Install home brew (from http://brew.sh/)
brew install gnu-cobol
Get the IDE from http://ttfa.net/cobolide
Run the IDE

Linux (Debian)
sudo apt-get install open-cobol python3-pip python-
qt5
sudo pip3 install OpenCobolIDE --upgrade

Linux (CentOS/RedHat)
sudo yum install

Windows
Binary build from
http://ttfa.net/gnucobol1
Get the IDE from
http://ttfa.net/cobolide

Or try http://www.tutorialspoint.com/compile_cobol_online.php
(doesn't work in Chrome for me; but does in Firefox)

GnuCOBOL 1.1 is
stable and 2.0 is
in development.

HackEdit is a cool project – an editor
that supports Python & COBOL

Find it on GitHub

http://brew.sh/
http://www.tutorialspoint.com/compile_cobol_online.php

Hello World example

program-id. HelloWorld.

procedure division.

display "Hello World!".

Personanlised Hello World

identification division.

program-id. HelloWorld.

data division.

working-storage section.

01 MyName pic x(20).
88 UserIsMike value “Mike” spaces.

procedure division.

display "Enter your name: " with no advancing

accept MyName

display "Hello " MyName "!"

if UserIsMike then

display “You're so great at COBOL!”

end-if.

$ cobc -x -free myprogram.cbl
$./myprogram

Command Line Hello World

identification division.

program-id. HelloWorld.

data division.

working-storage section.

01 MyName pic x(20).

procedure division.

display "Enter your name: " with no advancing

accept MyName from argument-value

display "Hello " MyName "!".

$ cobc -x -free myprogram.cbl
$./myprogram “Mike Harris”

Saying hello to lots of
people

program-id. HelloWorld.

environment division.

data division.

working-storage section.

01 MyName pic x(255).

01 NumberOfArguments pic 9.

01 CurrentArgumentIndex pic 9.

procedure division.

accept NumberOfArguments from argument-number

 perform varying CurrentArgumentIndex from 1 by 1
until CurrentArgumentIndex > NumberOfArguments

 accept MyName from argument-value

 display "Hello " function trim(MyName trailing)
" welcome to HacktionLab"

 end-perform

.

$ cobc -x -free myprogram.cbl
$./myprogram Mike Bob Alice

Calculator (Evaluate)

PERFORM WITH TEST BEFORE UNTIL OperatorIsStopRun

PERFORM EnterNumbers

EVALUATE TRUE

WHEN OperatorIsAdd COMPUTE Result = Num1 + Num2

WHEN OperatorIsSubtract COMPUTE Result = Num1 - Num2

WHEN OperatorIsMultiply COMPUTE Result = Num1 * Num2

WHEN OperatorIsDivide DIVIDE Num1 BY Num2 GIVING Result

WHEN OTHER SET Result TO 0

END-EVALUATE

DISPLAY "Result is ", Result

PERFORM ValidateOperator WITH TEST AFTER UNTIL ValidOperator

END-PERFORM

Monty Hall
Suppose you're on a game show and you're given the
choice of three doors. Behind one door is a car; behind

the others, goats. The car and the goats were
placed randomly behind the doors before the show.

The rules of the game show are as follows:

After you have chosen a door, the door remains closed
for the time being. The game show host, Monty Hall, who
knows what is behind the doors, now has to open one of

the two remaining doors, and the door he opens must have
a goat behind it. If both remaining doors have goats

behind them, he chooses one randomly. After Monty Hall
opens a door with a goat, he will ask you to decide
whether you want to stay with your first choice or to

switch to the last remaining door.

For example:
Imagine that you chose Door 1 and the host opens Door 3,
which has a goat. He then asks you "Do you want to switch
to Door Number 2?" Is it to your advantage to change your

choice?

Note that the player may initially choose any of the
three doors (not just Door 1), that the host opens a

different door revealing a goat (not necessarily Door 3),
and that he gives the player a second choice between the

two remaining unopened doors.

Simulate at least a thousand games using three doors for
each strategy and show the results in such a way as to make

it easy to compare the effects of each strategy.

What else can it do?

● File handling – sequential and direct
acess.

● External sub-programs (libraries)

● Copybooks (include files)

● Powerful string handling and other
intrinsic functions.

● GnuCOBOL Hooks into databases, but
not MySQL at the moment.

● Powerful report writing.

● User defined functions.

● Object-orientated COBOL with classes,
objects, factories, inheritance,
interfaces, etc.

CLASS-ID. Tester-cls AS "tester"
 INHERITS FROM Base.

REPOSITORY.
 CLASS BASE AS "base"
 CLASS Tester-cls AS "tester".

FACTORY.
WORKING-STORAGE SECTION.
01 InstCounter-fws PIC 9 VALUE ZEROS.
01 FactoryData-fws PIC 9 VALUE ZEROS.

METHOD-ID. New.
LOCAL-STORAGE SECTION.

01 LocalData-mls PIC 9 VALUE ZEROS.
LINKAGE SECTION.
01 TestObject-lnk OBJECT REFERENCE.
PROCEDURE DIVISION RETURNING TestObject-lnk.
. . . .
END METHOD New.
END FACTORY.
END CLASS TesterCls.

Conclusions

● COBOL is not dead

● COBOL is not really all that bad either

● Good, clean COBOL code can be written

● Old, nasty COBOL code can and should be refactored

we can learn some lessons from this….

● Good, clean code can be written in any programming language

● Old, nasty code in any language can and should be refactored

● Refactor your code early and often to avoid technical debt (even if it is written in the latest,
snazziest thing using the trendiest programming paradigm).

● Re-writing a project in a new code base is often the highest risk approach to take; the result is likely
not to be an improvement

● Any code you write in whatever programming language could end up being around for a very, very
long time; as can the language (to wit ALGOL, FORTRAN, BASIC, COBOL, PL/1 and even Perl are
all still out there!)

display “Thank You”
stop run.

end program COBOL-Workshop.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

